成都品茶不限次_同城空降快餐联系_QQ快餐200QQ群_微信二维码叫小妹150

数据资源: 科信所期刊全文

毛竹育种遗传学基础与代塑性状遗传因子挖掘

?

编号 lyqk011685

中文标题 毛竹育种遗传学基础与代塑性状遗传因子挖掘

作者 高志民 

作者单位 1. 国际竹藤中心竹藤资源基因科学与基因产业化研究所 北京 100102;
2. 竹藤科学与技术国家林业和草原局重点实验室 北京 100102;
3. 国家以竹代塑创新研究院 北京 100102

期刊名称 世界竹藤通讯 

年份 2025 

卷号 23

期号 1

栏目名称 特别报道:第二十七届中国科协年会学术论文 

中文摘要 “以竹代塑”已成为推动经济社会绿色、低碳、可持续发展的切实可行方案。毛竹作为我国资源量最丰富的代表竹种是代塑产品开发利用的最主要原料,然而不同代塑产品对竹资源的需求存在明显差异,现有毛竹的竹壁结构、纤维性状及细胞壁组分等代塑性状不能满足代塑产品对专用原料的需求,亟待对其进行遗传改良。基因组变异是遗传育种的基础,文章综述了毛竹基因组解译、起源与进化、遗传变异位点挖掘、优质性状育种潜力以及代塑性状相关遗传因子等方面的研究进展,并提出了毛竹代塑性状的分子育种方向。文章不仅对于竹子基因组学和遗传学研究具有重要科学价值,而且对于推动代塑性状的遗传改良、加速代塑专用品种的育种进程具有重要现实意义。

关键词 以竹代塑  毛竹  基因组  遗传变异  遗传因子 

基金项目 国家自然科学基金重大项目(32494791)。

英文标题 Genetic Basis of Moso Bamboo Breeding and Mining of Genetic Factors for Plastic Substitute Traits

作者英文名 Gao Zhimin

单位英文名 1. Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China;
2. Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China;
3. National Academy of Innovation for Bamboo as a Substitute for Plastic, Beijing 100102, China

英文摘要 “Bamboo as a substitute for plastic” has become a feasible solution to the green, low-carbon and sustainable socioeconomic development. Moso bamboo (Phyllostachys edulis), as the bamboo species with the most abundant resources in China, provides the main raw material for the development and utilization of bamboo-based products. However, bamboo-based products have significantly different demands for bamboo resources. The current anatomical structure, fiber characteristics, and cell wall components of moso bamboo can not meet the needs of raw materials for bamboo-based products, and there is an urgent need for the genetic improvement. Genomic variation is the foundation of genetic breeding. The paper reviews the research progress in the annotation, origin and evolution of moso bamboo genome, the mining of genetic variation sites, the breeding potential for high-quality traits, and the genetic factors to bamboo-based product, and proposes the directions of molecular breeding for bamboo-based product traits. The review not only has significant scientific value for bamboo genomics and genetics research but also has important practical significance for promoting the genetic improvement of bamboo-based product traits and accelerating the breeding process of dedicated varieties for bamboo-based products.

英文关键词 bamboo as a substitute for plastic;Phyllostachys edulis;genome;genetic variation;genetic factor

起始页码 1

截止页码 9,27

作者简介 高志民,研究员,博士生导师,研究方向为竹藤生长发育的分子基础。E-mail:gaozhimin@icbr.ac.cn。

DOI 10.12168/sjzttx.2025.01.01.001

参考文献 [1] 江泽慧. 竹类植物基因组学研究进展[J]. 林业科学, 2012, 48(1): 159-166.
[2] 陈瑞阳. 中国主要经济植物基因组染色体图谱: 第四册: 中国竹类染色体图谱[M]. 北京: 科学出版社, 2003.
[3] WANG Y J, GUO C, LEI Z, et al. Haplotype-resolved nonaploid genome provides insights into in vitro flowering in bamboo[J]. Horticulture Research, 2024, 11(12): uhae250. DOI: 10.1093/hr/uhae250.
[4] 冯鹏飞, 李玉敏. 2021年中国竹资源报告[J]. 世界竹藤通讯, 2023, 21(2): 100-103.
[5] PENG Z, LU Y, LI L, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461, 461e451-452. DOI: 10.1038/ng.2569.
[6] ZHAO H, GAO Z, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10): 1-12.
[7] QIU Z, SUN Y, SU Y, et al. Comparative analysis of alternative splicing in moso bamboo and its dwarf mutant, Phyllostachys edulis 'Tubaeformis’ [J]. Forests, 2024, 15(7): 1233-1233.
[8] 1001 Genomes Consortium. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana[J]. Cell, 2016, 166(2): 481-491.
[9] WANG W, MAULEON R, HU Z, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557(7703): 43-49. DOI: 10.1038/s41586-018-0063-9.
[10] ZHAO H, SUN S, DING Y, et al. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits[J]. Nature Communications, 2021, 12(1): 5466. DOI: 10.1038/s41467-021-25795-x.
[11] HOU Y, GAN J, FAN Z, et al. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations[J]. Nature Communications, 2024, 15(1): 8085. DOI: 10.1038/s41467-024-52376-5.
[12] LIU Y, ZHU C, YUE X, et al. Evolutionary relationship of moso bamboo forms and a multihormone regulatory cascade involving culm shape variation[J]. Plant Biotechnology Journal, 2024, 22(9): 2578-2592.
[13] 沈丽丽, 曹斌斌, 杨光耀, 等. 毛竹及其2种竿型变异类型的全基因组重测序分析[J]. 基因组学与应用生物学, 2023, 42(6): 581-592.
[14] 马乃训. 中国刚竹属[M]. 杭州: 浙江科学技术出版社, 2014.
[15] WANG T, LIU L, WANG X, et al. Comparative analyses of anatomical structure, phytohormone levels, and gene expression profiles reveal potential dwarfing mechanisms in Shengyin bamboo (Phyllostachys edulis f. tubaeformis)[J]. International Journal of Molecular Sciences, 2018, 19(6): 1697. DOI: 10.3390/ijms19061697.
[16] JIN G, MA P F, WU X, et al. New genes interacted with recent whole-genome duplicates in the fast stem growth of bamboos[J]. Molecular Biology and Evolution, 2021, 38(12): 5752-5768.
[17] LIU J X, GUO C, MA P F, et al. The origin and morphological character evolution of the paleotropical woody bamboos[J]. Journal of Integrative Plant Biology, 2024, 66(10): 2242-2261.
[18] GUO X, CHEN H, LIU Y, et al. The acid invertase gene family is involved in internode elongation in Phyllostachys heterocycla cv. pubescens[J]. Tree Physiology, 2020, 40(9): 1217-1231.
[19] LI Z, WANG X, YANG K, et al. Identification and expression analysis of the glycosyltransferase GT43 family members in bamboo reveal their potential function in xylan biosynthesis during rapid growth[J]. BMC Genomics, 2021, 22(1): 867. DOI: 10.1186/s12864-021-08192-y.
[20] ZHENG S J, SHIN K, LIN W X, et al. Identification and characterization of PRE genes in moso bamboo (Phyllostachys edulis)[J]. International Journal of Molecular Science, 2023, 24(8): 6886. DOI: 10.3390/ijms24086886.
[21] MU C, JIANG J, FANG H, et al. Unraveling developmental patterns and differentiation trajectories in a single developing internode of moso bamboo (Phyllostachys edulis)[J]. Industrial Crops & Products, 2024, 222: 119646. DOI: 10.1016/j.indcrop.2024.119646.
[22] WU M, WANG Y, ZHANG S, et al. A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice[J]. Plant Molecular Biology, 2024, 114(5): 95. DOI: 10.1007/s11103-024-01487-0.
[23] ZHANG K, LAN Y, ZHANG S, et al. A PLATZ transcription factor PhePLATZ8 from moso bamboo (Phyllostachys edulis) plays a positive role in regulating growth and abiotic stress tolerance[J]. Industrial Crops & Products, 2024, 221: 119334. DOI: 10.1016/j.indcrop.2024.119334.
[24] LI Y, ZHANG D, ZHANG S, et al. Transcriptome and miRNAome analysis reveals components regulating tissue differentiation of bamboo shoots[J]. Plant Physiology, 2022, 188(4): 2182-2198.
[25] LI Y, ZHANG S, ZHANG D, et al. The miR166-mRNA network regulates vascular tissue differentiation in moso bamboo[J]. Frontiers in Genetics, 2022, 13: 893956. DOI: 10.3389/fgene.2022.893956.
[26] LI Y, VASUPALLI N, CAI O, et al. Network of miR396-mRNA in tissue differentiation in moso bamboo (Phyllostachys edulis)[J]. Plants (Basel), 2023, 12(5): 1103. DOI: 10.3390/plants12051103.
[27] GUO J, LUO D, CHEN Y, et al. Spatiotemporal transcriptome atlas reveals gene regulatory patterns during the organogenesis of the rapid growing bamboo shoots[J]. New Phytologist, 2024, 244(3): 1057-1073.
[28] 陈铭, 郭琳, 郑笑, 等. 中国15个主产区毛竹纤维形态比较[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 7-12.
[29] WEI Q, JIAO C, GUO L, et al. Exploring key cellular processes and candidate genes regulating the primary thickening growth of moso underground shoots[J]. New Phytologist, 2017, 214(1): 81-96.
[30] WANG N S, XU H, SUN Y H, et al. Isolation and expression analysis of PeDWF1 in Phyllostachys edulis[J]. Russian Journal of Plant Physiology, 2018, 65(5): 762-769.
[31] HUANG J, CHEN F, GUO Y, et al. GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements[J]. New Phytologist, 2021, 232(4): 1718-1737.
[32] CHEN Z, LI Y, TENG Z H, et al. Cotton green fiber promotes suberin synthesis interfering cellulose deposition in the secondary cell wall[J]. Industrial Crops and Products, 2023, 194: 116346. DOI: 10.1016/j.indcrop.2023.116346.
[33] YANG K, LI L, LOU Y, et al. A regulatory network driving shoot lignification in rapidly growing bamboo[J]. Plant Physiology, 2021, 187(2): 900-916.
[34] SUN H, WANG S, ZHU C, et al. A new biotechnology for in-planta gene editing and its application in promoting flavonoid biosynthesis in bamboo leaves[J]. Plant Methods, 2023, 19(1): 20. DOI: 10.1186/s13007-023-00993-4.
[35] SUN H, LI H, HUANG M, et al. Expression and function analysis of phenylalanine ammonia-lyase genes involved in bamboo lignin biosynthesis[J]. Physiologia Plantarum, 2024, 176(4): e14444. DOI: 10.1111/ppl.14444.
[36] SULIS D B, JIANG X, YANG C, et al. Multiplex CRISPR editing of wood for sustainable fiber production[J]. Science, 2023, 381(6654): 216-221.
[37] LIU Y, LI G, MAO Y, et al. Genome-edited trees for high-performance engineered wood[J]. Matter, 2024, 7(10): 3658-3671.
[38] ZHAO H, PENG Z, FEI B, et al. BambooGDB: a bamboo genome database with functional annotation and an analysis platform[J]. Database (Oxford), 2014, 2014: bau006. DOI: 10.1093/database/bau006.
[39] MA X, ZHAO H, YAN H, et al. Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data[J]. Computational and Structural Biotechnology Journal, 2021, 19: 2708-2718. DOI: 10.1016/j.csbj.2021.04.068.
[40] OSNATO M. Novel dwarfing alleles for the next green revolution: mutations in DTL and OSH15 alter internode elongation and grain size in rice[J]. Plant Cell, 2022, 34(10): 3499-3500.
[41] TSUDA K, MAENO A, OTAKE A, et al. YABBY and diverged KNOX1 genes shape nodes and internodes in the stem[J]. Science, 2024, 384(6701): 1241-1247.
[42] WANG W, LI G, ZHAO J, et al. Dwarf Tiller1, a Wuschel-related homeobox transcription factor, is required for tiller growth in rice[J]. PLoS Genetics, 2014, 10(3): e1004154. DOI: 10.1371/journal.pgen.1004154.
[43] NIU E, FANG S, SHANG X, et al. Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic Arabidopsis[J]. Molecular Genetics and Genomics, 2018, 293(5): 1191-1204.
[44]ZHOU Y, ZHANG Z T, LI M, et al. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling[J]. Plant Biotechnology Journal, 2015, 13(2): 269-80.
[45] YANG Z, LIU Z, GE X, et al. Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis[J]. Plant Cell, 2023, 35(6): 2114-2131.
[46] LIU L, CHEN G, LI S, et al. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton[J]. Plant Physiology, 2023, 191(3): 1985-2000.
[47] WANG N N, LI Y, CHEN Y H, et al. Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation and elongation in cotton (Gossypium hirsutum)[J]. Plant Cell, 2021, 33(8): 2736-2752.
[48] WANG Y, LI Y, HE S P, et al. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis[J]. Plant Cell, 2023, 35(11): 4133-4154.
[49] YANG K, LI Z, ZHU C, et al. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis[J]. Plant Physiology, 2024, 196(4): 2565-2582.
[50] LI L, YANG K, WANG S, et al. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses[J]. Plant Cell Reports, 2020, 39(6): 751-763.
[51] HUANG H, CHENG Y. Heterologous overexpression, purification and functional analysis of plant cellulose synthase from green bamboo[J]. Plant Methods, 2019, 15: 80. DOI: 10.1186/s13007-019-0466-0.
[52] WANG L, ZHAO H, CHEN D, et al. Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b[J]. Plant Cell Reports, 2016, 35(6): 1371-1383.

PDF全文 浏览全文

相关图谱

相关信息
扫描二维码