编号
lyqk002576
中文标题
林木非生物胁迫抗性基因工程研究进展
期刊名称
世界林业研究
年份
2008
卷号
21
期号
5
栏目编号
1
栏目名称
专题论述
中文摘要
干旱、极端温度和盐害等非生物胁迫因子是制约林木生长的重要因素。由于林木生长周期长,且抗逆机制极为复杂,长期以来,如何改良林木对非生物胁迫的抗性一直是育种学家的难题。然而,随着基因工程技术的发展,人们可以在基因水平上改造林木,提高其抗逆能力。文中主要介绍了林木抗逆基因工程的研究进展,探讨了目前基因工程技术应用于林木抗逆育种研究存在的问题,并对其应用前景进行了展望。
基金项目
江苏省高新技术项目(BG2007314)
英文标题
Progress in Genetic Engineering of Forest Trees Under Abiotic Stresses
作者英文名
Bi Yufang and Zhuge Qiang
英文摘要
Abiotic stresses such as drought,extreme temperature and salt injury are important factors limiting the growth of forest trees. Due to long cycle of forest trees growth and complicated mechanism of resistance, to improve forest trees resistant to abiotic stresses has been a difficult problem to forest breeders. With the development of genetic engineering technology, forest trees could be improved at the gene level and increase the resistance ability. This paper mainly describes the progress in genetic engineering of forest trees under abiotic stresses and discusses the existing problems in researches of forest breeding for abiotic stresses by using genetic engineering technology. Moreover, the prospect of genetic engineering technology for the application of forest trees breeding for abiotic stresses are presented in this paper.
英文关键词
forest trees;abiotic stresses;genetic engineering
起始页码
30
截止页码
36
投稿时间
2008/6/8
分类号
S722.3
参考文献
[1] Capell T, Escobar C, Lui H, et al. Over expression of the oatarg in ine decarboxy lase cDNA in transgenic rice (Oryza sativa L.) affects normald evelopment patterns in vitro and results in putrescine accumulation in tran sgenic plants[J]. Theor Appl Genet,1998, 97: 246-254.
[2] Che D, Meagher R B, Andrew C P H eaton, et al Expression of mercuricion reductase in Eastern cotton wood (Populus deltoids) confers mercuricion reduction and resistance[J]. Plant BiotecnolJ, 2003, 1: 311-319.
[3] Doty S L, Shang T Q, Wilson A M. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees[J]. PNAS, 2007, 104(43): 16816-16821.
[4] Gao S Q, Xu H J, Cheng X G, et al. Improvement of wheat drought and salt to lerance by expression of a stress-inducible tran scription factor GmDREB of soybean (Glycinemax)[J]. Chinese Science Bulletin, 2005, 50(23): 2617.
[5] Harm on A C, Yoo B C , Mccaffery C. Pseudo substrate inhibition of CDPK, a protein kinases with a calmodulin-like domain[J]. Biochem, 1994, 33: 7278-7287.
[6] Homl strom K O, Somersalo S, Mandal A, et al Improved tolerance to salinity and low temperatu re in transgenic tobacco producing glycine betaine[J]. J Expt Bot, 2000, 51: 177-185.
[7] Kasuga M, Liu Q, Miura S, et al m proving plant drough ,tsalt and freezing tolerance by genetran sfer of a single stress-inducible transcription factor[J]. Nature Biotech, 1999, 17: 287-291.
[8] KovtunY, ChiuW L, Tena G, et al Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants[J]. Proc Natl Acad Sci USA, 2000, 97: 2940-2945.
[9] Ming juan Tang, Jingwen Sun, Yun Liu, et al Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain containing transcription factor in the woody oil plant Jatropha curcas[J]. Plant Mol Biol 2007, 63: 419-428.
[10] Padm anabhan V, Dias D M A L, New ton R J. Expression analysis of a gene family in loblolly pine (Pinus taeda L.) indu ced by water deficit stress[J]. Plant Molecu lar Biology, 1997, 35:
801-807.
[11] Pardo JM, Reddy M P, Yang S. Stress signaling through Ca2+/Camlodulin dependent protein phosphatase calcineurin mediates salt adaptation in plants[J]. ProcN at l Acad Sci USA, 1998,95: 9681-9683.
[12] PellegrineschiA, Reynolds M, Pacheco M, et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome, 2004, 47: 493-500.
[13] Pilon-Smits E A H, Ebskamp M JM, Jeuken M J W, et al Microbial fructan production in transgenic potato plants and tubers[J]. Ind Crops Prod, 1996, 5: 35-46.
[14] Richard S, Morency M J, Drevet C, et al Isolation and characterization of a dehydrin gene from white spruce induced upon wounding K drought and cold stresses[J]. Plant Molecular Biology, 2000, 43; 1-10.
[15] Romero C, Belles JM, Vaya J L, et al Expression of the yeast treha lose-6-phosphate syn thase gene intransgenic tobacco plants: pleiotropic phenotypes include drought toleran ce[J].Planta, 1997, 201: 293-297.
[16] Rough C L, Senecoff J F, MeagherR B, et al Development of transgenic yellow poplar form ercury phytorem ediation[J]. Nature Biotechnology, 1998, 16: 925-928.
[17] Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK 1) enhanced drought tolerance in transgenic maize[J]. J Exp Bot, 2004, 55: 1013-1019.
[18] TarczynskiM C, Jensen R G, Bohnert H J. Stress protection of tran sgenic tobacco by production of osmolytemannitol[J]. Science, 1993, 259: 508-510.
[19] Umezawa T, Yoshida R, M aruyama K, et al SRK2C, a SNF1-related protein kinase 2, miproves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. ProcNatl Acad Sci USA, 2004, 101: 17306-17311.
[20] Wei Tang, R New ton, C Li et al Enhanced stress tolerance in transgen ic pine expressing the pepperCaPF1 gene is associated with the polyamine biosynthesis [J]. Plant Cell Report, 2007, 2(1) : 115-124.
[21] Zhao H W, ChenY J, Hu YL, et al. Construction of a trehalose-6-phosphate synthase gene driven by drought-responsive promoter and expression of drought-resistance in transgenic tobacco[J]. Acta Botanica Sinica, 2000, 42(6): 616-619.
[22] 常新东. 林木基因操作的现状与展望[J]. 世界林业研究,1997, 10 (4): 78-80.
[23] 柴宝峰, 李洪建, 王孟本, 等. 植物抗旱的分子生物学机制研究进展[J]. 山西大学学报 (自然科学版), 1999, 22(4): 400-406.
[24] 费云标, 孙龙华, 黄涛, 等. 沙冬青高活性抗冻蛋白的发现[J]. 植物学报, 1994, 36 (8): 649-650.
[25] 李春霞. 抗冻蛋白基因对山杨等植物遗传转化的研究 [D].哈尔滨: 东北林业大学, 2003.
[26] 林元震. 甜杨葡萄糖-6-磷酸脱氢酶基因克隆及结构分析与功能鉴定[D]. 北京: 北京林业大学, 2006.
[27] 刘斌, 李红双, 王其会, 等. 反义磷脂酶D基因转化毛白杨的研究[J]. 遗传, 2002, 24(1): 40-44.
[28] 刘凤华, 孙仲序, 崔德才, 等. 细菌mtl-D基因的克隆及在转基因八里庄杨中的表达[J]. 遗传学报, 2000, 27(6): 428-433.
[29] 刘桂丰, 杨传平, 蔡智军, 等. 转 beA 基因小黑杨的耐盐性分析及优良转基因株系的选择[J]. 林业科学, 2006, 42(7): 33-36.
[30] 马丽. 胡杨耐盐相关基因克隆及转化群众杨的研究[D]. 北京: 北京林业大学, 2005.
[31] 蔺娜. 转AhBADH、PCAT基因烟草和杨树的获得及其抗性分析[D]. 山东泰安: 山东农业大学, 2007.
[32] 樊军峰, 韩一凡, 李玲, 等. MtDl-guD 双价基因转化美洲黑杨×青杨的研究[J]. 林业科学, 2002, 38(6): 31-35.
[33] 孙静文. 构树 DREB 转录因子及木质素合成代谢相关基因的克隆及功能分析[D]. 北京: 中国科学院研究生院 (植物研究所), 2006.
[34] 杨传平, 刘桂丰, 梁宏伟, 等. 耐盐基因 Bet2A 转化小黑杨的研究[J]. 林业科学, 2001, 37(6): 34-38.
[35] 阳江华, 黄德宝, 刘术金, 等. 巴西橡胶树 6 个蔗糖转运蛋白基因的克隆与序列分析[J]. 热带作物学报, 2007, 28(4):32-38.
[36] 朱馨蕾, 马艳, 张富春. 盐胁迫下胡杨 cDNA 文库的构建及其 nhx 基因的克隆[J]. 植物研究, 2007,27(1): 82-88.
[37] 张冰玉, 苏晓华, 黄秦军, 等. 转果聚糖蔗糖转移酶基因银腺杨的获得[J]. 林业科技, 2005, 41(3): 48-53.
[38] 张德强, 赵树堂, 卢孟柱, 等. 杨树Na+/H+反向运输蛋白基因 (PNHX-1, PNHX-6)的克隆和检测[J]. 林业科学,2006, 42 (11): 29-36.
[39] 郑进, 刘凯于, 洪华珠. 杨树抗性转基因研究进展[J]. 湖北林业科技, 2004(1): 31-33.
[40] 邹维华, 赵强, 崔德才, 等. 反义磷脂酶Dγ基因与几丁质酶基因转化美洲黑杨 G2[J]. 林业科学, 2006, 42(1): 37-42.
PDF全文
浏览全文