成都品茶不限次_同城空降快餐联系_QQ快餐200QQ群_微信二维码叫小妹150

数据资源: 科信所期刊全文

城市公共空间绿视率对多时态热舒适度的影响

?

编号 lyqk011794

中文标题 城市公共空间绿视率对多时态热舒适度的影响

作者 毛志睿  李雨航  陈笑葵 

作者单位 1. 昆明理工大学建筑与城市规划学院 昆明 650504;
2. 湖南城市学院建筑与城市规划学院 湖南益阳 413000;
3. 数字化城乡空间规划关键技术湖南省重点实验室 湖南益阳 413000

期刊名称 中国城市林业 

年份 2025 

卷号 23

期号 1

栏目名称 专题:城市森林与城市热缓解 

中文摘要 【目的】为优化城市热环境与人居品质提供新视角。【方法】以武汉市江岸区滨水地段为例,结合街景数据与遥感气候数据,利用深度学习与ENVI-met模拟计算绿视率和生理等效温度(PET),分析其时空特征,探讨绿视率对热舒适度的影响。【结果】1)武汉市江岸区滨水地段内,绿视率受区域特征影响呈现分布差异;2)7∶00—15∶00,不同城市空间热舒适度(PET)变化速率不同,历史街区内部>街道区域>滨水公园区;3)绿视率与PET的负相关性随时间变化显著,早晨至中午逐渐增强,中午12∶00达到峰值后减弱;4)绿视率对PET的影响存在边际递减效应,绿视率在43.9%~47.3%时对PET的降低作用最显著(P<0.05),超过此范围后改善效果减弱;5)绿视率对热环境稳定性的影响显著,高绿视率显著减小了PET的日变化幅度,表现为更稳定的热环境和更小的日温差?!窘崧邸砍鞘锌占淅嘈拖灾跋烊然肪扯卣?绿视率与PET呈负相关关系,其调控效应在日间辐射峰值时段(12∶00前后)最强且存在边际递减规律;合理配置绿视率是提升热舒适度的关键。未来需进一步探究多气候条件下绿视率与植被类型、配置方式的关联机制。

关键词 多时态热舒适度  绿视率  语义分割  微气候模拟  边际递减效应 

基金项目 国家自然科学基金项目(52168004)

英文标题 Influences of Green View Index of Urban Public Space on Multi-Temporal Thermal Comfort

作者英文名 Mao Zhirui, Li Yuhang, Chen Xiaokui

单位英文名 1. Kunming University of Science and Technology, Kunming 650504, China;
2. College of Architecture and Urban Planning, Hunan City University, Yiyang 413000, Hunan, China;
3. Key Laboratory of Hunan Province for Key Technologies of Digital Urban-Rural Spatial Planning, Yiyang 413000, Hunan, China

英文摘要 【Objective】The study is to provide a new perspective for optimizing the urban thermal environment and residential quality.【Method】 The waterfront sections of Jiang'an District in Wuhan are taken as a case study to calculate green view index (GVI) and physiologically equivalent temperature (PET) by integrating street-view imagery and remote sensing climate data with deep learning and ENVI-met simulations to examine their spatiotemporal characteristics and discuss the GVI's impact on thermal comfort.【Result】1) The distribution of GVI in the waterfront sections of Jiang'an District varies due to regional characteristics; 2) At 7∶00-15∶00, the PET presents varied rates across urban spaces of different kinds, i.e., historical district interiors > street areas > waterfront parks; 3) The significant negative correlation between GVI and PET strengthens from morning to noon, peaking at 12∶00 before weakening; 4) GVI has a diminishing marginal effect on PET. The GVI, when in the range of 43.9%-47.3%, has the most substantial subduing effect on PET, and the effect will reduce beyond the scope; and 5) GVI significantly enhances thermal environment stability. High GVI reduces PET's diurnal variation, leading to a more stable thermal environment with smaller temperature fluctuations. This not only improves thermal comfort, but also increases urban climate stability.【Conclusion】Urban spatial typology shapes thermal dynamics, with GVI negatively correlated with PET. Its cooling effect peaks around 12∶00 and follows a marginal diminishing pattern. The optimal GVI configuration is the key to improving thermal comfort. Future studies should explore GVI's interactions with vegetation types and spatial configurations under varying climates.

英文关键词 multi-temporal thermal comfort;green view index (GVI);semantic segmentation;microclimate simulation;diminishing marginal effect

起始页码 1

截止页码 10

投稿时间 2025/1/4

作者简介 毛志睿(1972-),男,博士,教授,研究方向为遗产地文化景观等。E-mail:286604737@qq.com

通讯作者介绍 李雨航(1999-),女,硕士生,研究方向为遗产地文化景观规划。E-mail:1285128224@qq.com

E-mail 1285128224@qq.com

DOI 10.12169/zgcsly.2025.01.04.0001

参考文献 [1] 贾鑫睿,张鲲,袁溯阳,等.基于景观要素与夏季热舒适性的湿热地区城市公园吸引力研究[J].中国园林,2023,39(12):114-119.
[2] WU J S,LIU C,WANG H L.Analysis of Spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities based on local climate zones[J].Building and Environment,2022,207:108568.
[3] YI P,LIU L Y,HUANG Y,et al.Study on the coupling relationship between thermal comfort and urban center spatial morphology in summer[J].Sustainability,2023,15(6):5084.
[4] 王丹,肖作鹏,林姚宇.亚热带城市边缘区街道空间舒适感的气候与建成环境要素解析[J].现代城市研究,2023,38(7):107-114.
[5] 解卫东,顾康康,常鑫悦,等.基于ENVI-met的高层住区乔木种植对人体热舒适度的影响研究[J].城市建筑空间,2022,29(3):78-81.
[6] 帅林茹,冯莉,阳少奇.植被种植方式对城市微环境热舒适度影响的数值模拟研究[J].生态学杂志,2022,41(8):1611-1618.
[7] 董冬,邰宇,罗毅,等.植被配置结构对人体热舒适度影响的数值模拟研究[J].环境与职业医学,2023,40(8):900-909.
[8] 刘慧娇,张中一,冯国庆,等.聊城市东昌湖湿地公园植物空间秋季热舒适[J].中国城市林业,2024,22(1):177-183.
[9] 何采蔚,郑森林.热湿气候下树种和种植模式对街道热舒适度影响的模拟研究[J].住宅与房地产,2023(11):12-17.
[10] 骆心仪,赵阳,郭曈烨,等.基于热舒适的湿热地区露营地树木种植配置模式[J].中国城市林业,2023,21(4):127-134.
[11] 胡琪琪,顾韩.室外热舒适影响因素及其评价指标研究进展[J].中国城市林业,2023,21(1):43-49.
[12] CHIANG Y C,LIU H H,LI D Y,et al.Quantification through deep learning of sky view factor and greenery on urban streets during hot and cool seasons[J].Landscape and Urban Planning,2023,232:104679.
[13] SUN D,JI X,GAO W J,et al.The relation between green visual index and visual comfort in Qingdao coastal streets[J].Buildings,2023,13(2):457.
[14] 周宏轩,濮宏桐,崔璐璐,等.基于视觉指数的城市热环境效应:以徐州市为例[J].应用生态学报,2022,33(8):2213-2220.
[15] STEWART I D,OKE T R.Local climate zones for urban temperature studies[J].Bulletin of the American Meteorological Society,2012,93(12):1879-1900.
[16] GELARO R,MCCARTY W,SUÁREZ M J,et al.The modern-era retrospective analysis for research and applications,version 2(MERRA-2)[J].Journal of Climate,2017,30(14):5419-5454.
[17] BRUSE M,FLEER H.Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model[J].Environmental Modelling&Software,1998,13(3/4):373-384
[18] CRANK P J,SAILOR D J,BAN-WEISS G,et al.Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies[J].Urban Climate,2018,26:188-197.
[19] YU X Y,QI W.Measuring vegetation greenery in park using iPhone panoramic image and a new green vegetation extraction index[J].Urban Forestry&Urban Greening,2021,65:127310.
[20] 王洋洋,黄锦楼.基于绿视率的城市生态舒适度评价模型构建[J].生态学报,2021,41(6):2170-2179.
[21] 刘晓天,孙冰,廖超,等.基于街景图像的城市街道绿视率计量方法比较分析[J].江西农业大学学报,2020,42(5):1022-1031.
[22] 陶贵鑫,周宏轩,王昭清,等.道路绿视率不同识别方法比较研究:以徐州市为例[J].西北林学院学报,2024,39(2):156-165.
[23] XIA Y X,YABUKI N,FUKUDA T.Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning[J].Urban Forestry&Urban Greening,2021,59:126995.
[24] 王鸿雁,车向红,徐辛超,等.利用DeepLabv3+模型提取分析街景图像绿视率:以北京三环内为例[J].测绘通报,2024(3):88-94.
[25] ZHANG W Y,ZENG H.Spatial differentiation characteristics and influencing factors of the green view index in urban areas based on street view images:a case study of Futian District,Shenzhen,China[J].Urban Forestry&Urban Greening,2024,93:128219.
[26] 吕旭昕,窦洛文,落昊飞,等.绿视率与NDVI值相结合的道路空间绿量可视性研究:以沣东新区为例[J].西北林学院学报,2022,37(3):239-245.
[27] 苏雷,陈伟峰,李俊英,等.基于绿视率和NDVI的城市街道景观分析与优化研究[J].西北林学院学报,2024,39(2):256-264.
[28] 折原夏志.緑景観の評価に関する研究--良好な景観形成に向けた緑の評価手法に関する考察[J].IBEC:建築環境·省エネルギー情報,2006,27(3):32-35
[29] 黄昕,杨其全,马嵩,等.城市热环境遥感[M].北京:科学出版社,2022.
[30] 白雪莲,乔荣荣,季树新,等.不同生活型植物非光合部分反射光谱和盖度的关系[J].生态学报,2022,42(1):186-195.
[31] ZHOU H X,TAO G X,NIE Y X,et al.Outdoor thermal environment on road and its influencing factors in hot,humid weather:a case study in Xuzhou City,China[J].Building and Environment,2022,207:108460.
[32] 黄海静,介鹏宇.高温热浪期间城市空间热环境特征及人群热舒适度评价研究:以重庆渝中区典型空间为例[J].现代城市研究,2024,39(1):98-106.

PDF全文 浏览全文

相关图谱

扫描二维码