成都品茶不限次_同城空降快餐联系_QQ快餐200QQ群_微信二维码叫小妹150

数据资源: 中文期刊论文

基于BP神经网络的油松人工林树高模型研究

?

编号 zgly0001686086

文献类型 期刊论文

文献题名 基于BP神经网络的油松人工林树高模型研究

作者 陈佳琦  赵鹏祥  祁宁  李卫忠 

作者单位 西北农林科技大学林学院 

母体文献 西北林学院学报 

年卷期 2020年01期

年份 2020 

分类号 S791.254  S758 

关键词 BP神经网络  树高模型  黄龙山  油松人工林 

文摘内容 通过分析比较不同算法以及不同输入层因子,构建出最佳的黄龙山区油松人工林树高预测BP神经网络模型。以陕西省延安市黄龙县44块油松人工林样地实测数据为数据源,通过对6种BP神经网络的训练方法进行训练,经过反复筛选找出最优模型并与传统胸径-树高模型作比较;最后将BP神经网络中的输入因子从2个增加到6个后,经过反复训练筛选出最优模型与2因子的BP神经网络模型作比较。结果表明:1)贝叶斯归一化(BR)算法在6种算法中表现最佳,R~2和MSE分别为0.963 0和1.168;2)不同隐含层节点数的选取会对BP神经网络模型的建立产生一定的影响,BP神经网络模型的决定系数(R~2)随着隐含层节点数的增加呈现先上升后下降的趋势;均方误差(MSE)呈现先下降后上升的趋势,两者都在节点数为10时有极值,此时的模型为最优模型;3)当输入因子为胸径和优势树高时,油松人工林的最优模型结构为(输入层节点数:隐含层节点数:输出层节点数为2∶10∶1),此时BP神经网络模型对树高预测的决定系数(R~2)和均方误差(MSE)分别为0.761 0和1.984 7;当输入因子为胸径、优势树高、林分密度、竞争指数、坡度和坡向时,最优模型结构为6∶10∶1,此时BP神经网络模型对树高预测的决定系数(R~2)和均方误差(MSE)分别为0.844 7和1.955 7。由此得出,在建立油松人工林树高BP神经网络模型方面优化类算法要优于启发式下降算法;BP神经网络模型与传统模型相比,BP神经网络模型不需要目标方程结构,并且模拟和预测的精度均要优于传统模型;在原有BP神经网络模型的基础上再引入林分密度、竞争指数、坡度、坡向这些输入因子后所得到的新的BP神经网络模型对树高模型的建立和预测要优于原有BP神经网络模型。

相关图谱

扫描二维码