成都品茶不限次_同城空降快餐联系_QQ快餐200QQ群_微信二维码叫小妹150

数据资源: 中文期刊论文

基于机载LiDAR数据估测林分平均高

?

编号 zgly0001711860

文献类型 期刊论文

文献题名 基于机载LiDAR数据估测林分平均高

作者 赵勋  岳彩荣  李春干  张丽梅  谷雷 

作者单位 西南林业大学林学院  广西大学林学院  西南林业大学园林园艺学院 

母体文献 林业科学研究 

年卷期 2020年04期

年份 2020 

分类号 S758 

关键词 机载LiDAR点云数据  随机森林回归  支持向量回归  林分平均高  高峰林场 

文摘内容 [目的 ]以2016年9月广西壮族自治区高峰林场实验区获取的机载LiDAR点云数据为基础,通过提取30 m×30 m空间林分尺度下的LiDAR点云特征变量实现对林分平均高的估测。[方法 ]首先将105块实测林分平均高度的样地数据按照3:1的比例随机划分为训练样本(79)和检验样本(26),采用随机森林回归(RFR)和支持向量回归(SVR)两种机器学习算法对79个训练样本与对应的林分LiDAR点云特征变量回归建模。建模方案包括随机森林模型、支持向量机模型及随机森林+支持向量机组合模型。其次利用26个检验样本数据评价模型预测精度。最后统计3个模型中训练样本和检验样本对应的精度评价指标,以一个预测精度高、泛化能力强的模型作为最终模型进行林分平均高制图。[结果 ]表明:随机森林模型的训练样本和检验样本的决定系数(R2)分别为0.886 1和0.837 5,均方根误差(RMSE)分别为1.22和1.56;支持向量机模型的训练样本和检验样本的决定系数(R2)分别为0.886 4和0.840 9,均方根误差(RMSE)分别为1.21和1.54;组合模型的训练样本和检验样本的决定系数(R2)分别为0.859 8和0.853 2,均方根误差(RMSE)分别为1.35和1.48;[结论 ]组合模型的泛化能力及预测精度最好,支持向量机次之,最后为随机森林。利用组合模型可有效完成研究区林分平均高制图。

相关图谱

扫描二维码